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The spatial structure of the streamfunction field of free, linear internal waves in a two- 
dimensional basin is governed by the canonical, second-order, hyperbolic equation on 
a closed domain. Its solution can be determined explicitly for some simple shapes of 
the basin. It consists of an algorithm by which ‘webs’ of uniquely related characteristics 
can be constructed and the prescription of one (independent) value of a field variable, 
related to the streamfunction, on each of these webs. The geometric construction of 
the webs can be viewed as an alternative version of a billiard game in which the angle 
of reflection equals that of incidence with respect to the vertical (rather than to the 
normal). Typically, internal waves are observed to be globally attracted (‘focused’) to 
a limiting set of characteristics. This attracting set can be classified by the number of 
reflections it has with the surface (its period in the terminology of dynamical systems). 
This period of the attractor is a fractal function of the normalized period of the 
internal waves : large regions of smooth, low-period attractors are seeded with regions 
with high-period attractors. Occasionally, all internal wave rays fold exactly back 
upon themselves, a ‘resonance’: focusing is absent and a smooth pattern, familiar 
from the cellular pattern in a rectangular domain, is obtained. These correspond to 
the well-known seiching modes of a basin. An analytic set of seiching modes has also 
been found for a semi-elliptic basin. A necessary condition for seiching to occur is 
formulated. 

1. Introduction 
Study of the canonical hyperbolic equation (the wave equation) is usually performed 

on half-open domains only. This is because in those cases one of the independent 
variables is time and no future behaviour of the solution is normally imposed. In the 
present study the wave equation governs the spatial structure (of the streamfunction) 
of linear, monochromatic internal waves in a stratified basin. It should thus be 
solved on a closed domain on which boundary the streamfunction vanishes. Magaard 
(1962, 1968) showed that this equation is solved by a functional relation that can 
be rewritten as a mapping between successive surface intersections (reflections) of 
characteristics. The interval between two successive surface intersections is referred 
to as a fundamental interval. Once the field variable is prescribed in a fundamental 
interval the complete solution can be determined in two steps. First, from the specified 
value of the field variable at the surface in that fundamental interval this field variable 
can be constructed over the whole surface domain. Second, the streamfunction at 
any point of the interior domain is obtained as the difference of the value of this 
field variable that is carried invariantly along the characteristics intersecting at that 
point. Magaard basically restricts his study to propagation of internal waves that 
have a frequency for which the basin bottom is subcritical (characteristic steeper than 
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bottom) which constitute two detached monotonic maps: one for rightward and one for 
leftward propagation. In this study we extend this to a consideration of internal waves 
with frequencies for which the bottom is supercritical: internal waves bounce back and 
forth between the sides of the basin. The right- and leftward modes of propagation 
get connected and present a bi-modal map. For certain simple cross-sectional profiles 
this map can be obtained explicitly. The characteristics fold back over and over again 
to form what will be referred to as a web. The construction of webs of characteristics 
and the prescription of the field variable in a unique (fundamental) interval form the 
two independent parts of the solution of this problem. It is the former, geometric 
aspect that is most influential however. Irrespective of what the field variable may 
be it predicts the possible existence of certain limiting characteristics to which the 
solution is attracted. 

In $2 the equations governing internal gravity waves in a two-dimensional stratified 
basin are derived and the functional relation of Magaard (1962, 1968) is reviewed. In 
93 this is applied to a non-trivial, one-parameter topography - the parabolic basin 
~ for which the bi-modal map can be derived. Webs of characteristics and their 
asymptotic states are constructed with this map. Several geometrical aspects are 
pointed out for these attractors, giving rise to a conjecture on nested maps. In 94 an 
example of a solution of the complete problem is given for a special choice of the 
field variable in the fundamental intervals. Standing versus propagating modes of 
internal gravity waves are discussed. 

One would like to view a boundary value problem like the one presented here as an 
eigenvalue problem. Solutions of such a problem are usually obtained as a (finite or 
infinite) set of discrete eigenfrequencies separated by compact regions where no such 
frequencies reside. The solutions of the hyperbolic equation in the only geometry for 
which analytical solutions are presently available, the rectangle, however signal that 
there are some unusual facets to this kind of eigenvalue problem (Miinnich 1994). 
First, the eigenfrequencies (eigenperiods) are degenerate : for any eigenperiod there 
is an infinite number of spatial structures corresponding to it (spatial multiples of 
the horizontal and vertical structure of the basic state). Second, the eigenfrequencies 
are dense: every rational frequency is an eigenfrequency, much like for inertial 
motion on a torus. Thus the ‘eigen-ness’ of the eigenfrequencies is becoming dubious 
terminology. In $5 the solution for the rectangle, obtained by separation of variables, 
will be compared with that using the method of characteristics, employed here. It is 
argued that for irrational frequencies the characteristics are plane-filling and thus the 
width of the fundamental interval over which the field variable can be independently 
specified shrinks to zero (a single point). Hence the streamfunction at any point - 
being the difference of two sampled values of the field variable - vanishes and no 
free solution for such frequencies exists. In contrast to what is found in a parabolic 
basin, for rational frequencies, each characteristic exactly folds back upon itself: a 
resonance. In this section, finally, it is pointed out that analytical solutions, bearing a 
one-to-one relationship to those found for the rectangle, can be obtained in a (semi) 
elliptic basin. 

For other non-rectangular geometries there also appear to be frequencies for which 
stationary internal wave patterns do not exist. The notion of the existence of certain 
discrete ‘eigenfrequencies’, however, regresses even further, since, in one sense, these 
now constitute compact domains. 

Section 6 discusses the same features for some other simple basin shapes. Section 7, 
finally, discusses the relevance of the present study for oceanic and lake applications. 
It also summarizes the main results and limitations of this approach. 



Geometric focusing of internal waves 3 

2. Internal-wave equation and solution by functional relation 
2.1. Internal-wave equation 

Internal waves in a uniformly stratified, inviscid, linear, hydrostatic, non-rotating, two- 
dimensional Boussinesq fluid are governed by the momentum equations, conservation 
of density and continuity equation (e.g. Turner 1973): 

ab 
- + wN2 = 0, 
at 
au aw 
ax a Z  
- + - = o .  

( 2 . 1 ~ )  

(2.lb) 

(2.lc) 

(2.14 

Here t is time and u and w are the velocity components in the horizontal ( x )  and 
vertical (z) directions in a Cartesian frame of reference whose origin is located at 
the surface on the basin centreline. The positive z-direction is antiparallel to gravity. 
Gravitational acceleration is denoted as g .  Perturbation density and pressure fields, 
p and p ,  are expanded about a density field p.  + po(z)  and a hydrostatically-related 
pressure field, where p.  9 po(z) 9 p(x,z , t ) ,V{x,z , t} .  Buoyancy b is defined in (2.lb) 
and N is the Brunt-Vaisala frequency defined through N 2 ( z )  = -(g/p.)(dpo/dz), 
which acts as the upper bound of internal wave frequencies (Groen 1948). 

Elimination of the buoyancy b between (2.lb) and ( 2 . 1 ~ )  yields 

while, with ( 2 . 1 ~ ) ~  subsequent elimination of p / p ,  gives 

a 3 U  aw 
azat2 ax  
- = -N2. 

( 2 . 2 ~ )  

(2.2b) 

Equation (2 .14 suggests the use of a streamfunction Y ( x ,  z ,  t )  related to the velocities 
by u = -8Y /az, w = aY /ax ,  with which (2.2b) becomes 

For monochromatic waves of frequency o 

Y ( x ,  z ,  t )  = y(x, z)ebiW', 

this reduces to 

(2.4) 

It will be assumed that the stratification is uniform, so that N is a constant. In 
an infinite medium (2.3) is satisfied by planar waves (with horizontal and vertical 
wavenumbers k and m), which obey the dispersion relation 

k 
m 

= +N-. 

The frequency is therefore just a function of the angle that the wave vector makes 
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with the vertical. From the dispersion relation the perpendicular nature of internal 
wave propagation - group velocity vector normal to phase velocity vector - can be 
inferred and is such that the vertical components of these two vectors are always in 
opposition (Lighthill 1978). Demonstrations of this type of internal wave propagation 
have been given in the laboratory studies of Gortler (1943), Mowbray & Rarity (1967) 
and Thorpe (1968), while ray-like propagation of internal waves was also observed 
in the ocean by deWitt et al. (1986) and Pingree & New (1991). 

By scaling x with the basin half-width L and z with COLIN, (2.4) obtains the 
canonical form of a second-order, hyperbolic equation : 

(2 .5~)  

This is the 'wave equation' in spatial coordinates only. For a wide class of non- 
uniform, ocean-like stratification profiles a coordinate and variable transformation 
exists for which (2.4) can also be reduced to standard form (Magaard 1962; Baines 
1973). This transformation, however, also affects the description of the form of the 
boundary. For the sake of simplicity, therefore, we will stick to the assumption of 
uniform stratification' ( N  = constant). 

The boundary condition on the basin wall is one of vanishing streamfunction such 
that the flow is parallel to it: 

y = 0 at z = 0,z  = -zh(x). (2.5b) 

Here 
N D  
W L '  

z - -  (2 .6~)  

which can be interpreted as the scaled period of the monochromatic internal wave 
( N / o ) .  Alternatively z can be viewed as the scaled aspect ratio (depth divided by 
half-width, D / L )  of the basin. Non-dimensional topography is given by h(x), 1x1 < 1, 
with h(f1) = 0, and, for symmetric topographies, h(0) = 1. A scaling like this may 
seem inconvenient, as for fixed geometry (D,  L, N and h(x)) the 'depth', z, changes with 
changing frequency of. the wave and one cannot draw rays of waves having different 
frequencies in one and the same diagram. This is offset, however, by the advantage 
that for each frequency wave rays make one and the same angle of 45" with respect 
to the vertical, which allows quick visual assessment of diagrams. Note that this 
angle also applies after reflection off sloping boundaries. This makes internal-wave 
reflection unusual when compared to, for instance, the coastal reflection of obliquely 
incident surface gravity waves, which obey the specular law of reflection in which the 
angle of incidence, measured with respect to the coast's normal, equals the angle of 
reflection. The peculiar nature of reflection of internal gravity waves implies that there 
exists a critical slope of the topography, as when it equals that of the characteristics. 
With the non-dimensionalization employed here these slopes are f45", below and 
above which the waves reflect along or against the original x-direction. For these and 
other basic aspects of internal wave propagation see e.g. Turner (1973) and Lighthill 
(1978). 

For values of w as low as 10-4s-' - typical for semi-diurnal tides - the Coriolis 
frequency f (twice the angular velocity of the Earth multiplied by sine of latitude) 
can no longer be neglected. Also, for high-frequency waves, non-hydrostatic effects 
are no longer negligible. Both effects merely lead to a slight change in the definition 
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FIGURE 1. Sketch of a uniformly stratified, parabolic basin with subcritical bottom slope, showing 
the approach of the characteristics towards the corners of the basin for z = 0.4. 

of z, (Baines 1973): 

(2.6b) 

which provides a mapping of the internal wave band (f < o < N )  onto the positive 
real axis of the scaled period z. Lakes and oceans are characterized by values of 
z = (0.1-l), based on f = 5 x 10-5s-1, o = 10-4-10-3s-1, N = 10-2s-1, D = lo2- 
5 x 103m, L = 104-2.5 x 106m. 

2.2. Solution with functional relation 
Magaard's (1962, 1968) work is succinctly presented in Sandstrom (1976) which will 
be followed here. Equation (2.5a) is solved by arbitrary complex functions f - ( x  - z )  
and f + ( x  + z )  of the real characteristic variables x - z and x + z :  

y ( x , z )  = f - ( x  - z )  + f+(x + 2 ) .  (2.7) 

Applying the surface boundary condition (2%) shows that the functional forms of 
f k  are related, 

on dropping the subscript. Hence, 
f+(x) = -f-(x) = - f ( x > ,  

y ( x ,  z )  = f ( x  - z )  - f ( x  + 2 ) .  (2.8) 

Let us denote the bottom as H ( x )  = zh(x) .  Then, application of the boundary 

(2.9) 

a functional relation for f(x). If successive surface intersections are denoted as 
x,,  xn+l, ... (where n runs over all positive and negative integers), then, from figure 1, 
it is obvious that 

(2.1 Oa) 

condition (2.5b) at the bottom z = - H ( x )  of the basin yields 

f(x + H ( x ) )  = f(x - H ( x ) ) ,  

X n + l  - Xn 
2 

= sH(X),  

where 
- Xn+1 + X n  

2 
X =  (2.10b) 
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and where sign s = +1, -1 determines the two modes of the map for rightward and 
leftward moving characteristics respectively. Equation (2.9), applied at X, therefore, 
can be interpreted as 

f(xn+l) = f(xn), (2.11) 
which states that the ‘field variable’ f is invariant under map (2.10a). In fact f is 
unchanged along the entire trajectory of reflecting characteristics, such that at any 
point in the interior, the streamfunction value can be readily obtained as the difference 
of the values of the field variable on the two characteristics that go through it, see (2.8). 
Its validity is obvious for any topography that is entirely subcritical (a special case of 
which is shown in figure l), since neighbouring characteristics retain their ordering 
(i.e. for yo > xu one has y1 > x,). Equation (2.11) equally applies for topographies 
that are partially supercritical, at least, when f is real, (see 93), which is less obvious 
because the ordering is destroyed due to back-reflection. The region between two 
successive surface intersections will be referred to as a fundamental interval, since, 
when we prescribe the field variable f(x) at the surface for x E [x,, x,+~) then, because 
of (2.11), f(x) is uniquely determined for all x E [-1,1]. This definition applies to 
the subcritical case discussed above. Identification of the fundamental interval for 
supercritical cases will be addressed in $4. 

The ‘solution’ thus consists of two parts that will be discussed separately in the 
next two sections: (i) a geometric aspect, that may be captured in the set of successive 
surface intersections, S(x0) = {..., x-2, x-1, xu, xl, x2, ..} and (ii) the prescription of the 
field variable f(x) in a fundamental interval x E [X~,X,+~). The set S(xo), together 
with connecting characteristics will be referred to as the web belonging to xu - a name 
that is more readily appreciated for the supercritical topographies, discussed in the 
next section. The largest fundamental interval will be called the primary interval. For 
subcritical topographies, like the one in figure 1, the limiting points of S(x0) are the 
corners of the basin: 

lim xn = k l ;  
n++m 

these constitute the attractor of the rightward and leftward ‘moving’ characteristic 
respectively. More complicated attractors will be obtained in the next section. Note 
that in spite of the terminology no real movement towards the attractor can be meant 
here, since time has been removed from the hyperbolic equation. 

The generation of the ‘web’ is merely a part of constructing the spatial structure 
of y(x, 2 ) .  Nevertheless, Wunsch (1969), considering internal waves in a subcritical 
wedge, concludes that the corner of a subcritical topography does act as a physical 
attractor of the internal wave field. He does so on considering some laboratory 
experiments which led him to re-interpret his earlier theoretical analysis of the problem 
in which he obtained a standing internal wave pattern (Wunsch 1968). He concludes 
that only the incoming solution should be physically acceptable, since all of the energy 
of the internal wave field will be absorbed, because of the intensification of the wave 
field and subsequent breaking and mixing - and breakdown of the linear theory - 
that accompany the approach of the corner. Similar results will occur for supercritical 
basins: a standing wave pattern can in principle be constructed, but, again in view 
of the intensification of the internal wave field, the energy of the incoming wave will 
be deposited near the physical location of the attractor. Sandstrom (1976) obtained 
an explicit solution like that of Wunsch (1968) for a particular closed, subcritical and 
symmetrical basin. Manton & Mysak (1971) pointed out that the functional relation 
(2.9) can be used to construct internal wave solutions for arbitrary topographies, a 
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viewpoint that we share. The approach they take, however, is different from that in 
the following and results should thus be considered to be complementary. 

3. Explicit bi-modal map for a parabolic basin 
For certain simple basin shapes, H ( x ) ,  the implicit map, given by ( 2 . 1 0 ~ )  and (2.10b) 

can be made explicit. In the following we will consider several such topographies 
taken as (piecewise) linear or quadratic polynomials. They can be classified according 
to the number of parameters needed to specify them. One parameter (z) is related to 
the product of the ratio of the buoyancy frequency and wave frequency and the aspect 
ratio, see ( 2 . 6 ~ ) .  0 ther parameters are sometimes needed to specify piecewise-defined 
topographies. Apart from the rectangle and the ellipse (that will be discussed in $ 5 )  
only one other one-parameter topography will be considered : the parabolic basin. 
This will be our main example. To some extent the results obtained in that case 
are representative for those found for multi-parameter topographies, like the bucket. 
This is a piecewise, linear topography having sloping side walls and a flat bottom in 
between. However, since some new features arise for these cases they will be given 
separate attention in $6. 

3.1. Explicit bi-modal map 
When the basin shape is parabolic, h(x)  = 1 - x2, 

H ( x )  = z( 1 - x2), (3.1) 

map (2.10a)-(2.10b), with x = x, and xr,l = x,+~ for rightward (s = +1) and leftward 
(s = -1) moving characteristics, becomes 

( 3 . 2 ~ )  

(3.26) 

where signs, in front of the radicals, have been chosen such that x, > x and XI < x. 
It can be verified that x,(x~(x)) = x and vice versa: the right- and leftward maps are 
each other's inverse, x;'(x) = x~(x). Also, for a symmetrically shaped topography, 
x l ( x )  = -xr( -x) ,  and hence xr(-xr(-x)) = x. Because of this we will also denote 
x,(x) just by X ( x )  and x~(x) by - X ( - x ) .  

The topography has maximum slope at its corners, x = +1, where it is +27. It 
is therefore everywhere subcritical (i.e. makes an angle with the horizontal which is 
less than 45"), when 7 <: 1/2,  and these two modes are detached. Rightward moving 
characteristics end up in the right corner and vice versa (see figures 1 and 2a). These 
are the fixed points (attractors) of the map. 

When the topography is supercritical however, the two modes get connected as the 
corners no longer act as fixed points. The naive map (3.2a)-(3.2b) formally computes, 
for some range of x-values, a new surface intersection which lies outside the basin 
domain, -1 < x < 1, see figure 2(b). For a rightward 'moving' characteristic this 
happens for x > x,, with 

2 x = - - 3  s -  
7 
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FIGURE 2. (a) Subcritical (z < 1/2) and (b )  supercritical (t > 1/2) maps of successive surface 
intersections of characteristics for rightward (upper curve, X ( x ) )  and leftward (lower curve, - X ( - x ) )  
‘moving’ characteristics. Construction of successive surface intersections is shown for one particular 
value of XO. The diagonal line is drawn for convenience. 

being the point that is mapped onto the right corner (that can be obtained from xl(l)), 
see figure 3. For values x < x, the simple forward map applies. For x > x,, however, 
the new virtual value, X ,  not only lies outside the basin domain, but also has two pre- 
images, x and Y say. The latter is in fact the true image of x (see figure 3) .  Neglecting 
the virtual points that appear, the sequence {x,) can be constructed graphically as 
in figure 2(b). One often wants the explicit functional dependence, however. This 
can be obtained as follows. The leftward map of X (the two roots of the quadratic 
that is obtained from (2.10a) with H ( x )  given by (3.1)), gives the two pre-images 



Geometric focusing of internal waves 9 

0 

z -0.4 

-0.8 

4 . 8  0 
X 

1 .0 

FIGURE 3. Sketch showing the construction of successive surface intersections of characteristics 
for a supercritically reflecting bottom. The critical characteristic (surface intersection x,) and 
characteristic going through the right-hand corner (intersecting at x,) are also shown. 

xand Y :  

112 Y=--X-(--+4+1) 1 -4x . 
z z 22 

Adding these yields 
2 

Y = - - x - 2X(x), 
z 

( 3 . 3 4  

(3.36) 

(3.4) 

where X(x), the inverse of (3.3a), is given by (3 .2~) .  In figure 3, two regions in the 
interval x E [xs, 11 can be recognized which determine whether leftward reflection 
occurs for a characteristic coming from below, or from above. The dividing line is 
the critical characteristic (which intersects the bottom at the point where the bottom 
is critical). Its intersection with the surface is at 

3 
- 42 

x = - - z .  

Physically, internal waves propagating along that critical characteristic tend to be 
mainly dissipated (due to breaking resulting from strong amplification), see Cac- 
chione & Wunsch (1974) and Ivey & Nokes (1989). The mathematical approach 
pursued in this section, however, merely aims to construct webs of characteristics 
without implying anything about the physical fields carried along them. It considers 
construction of the critical characteristic as a limiting process. For characteristics 
approaching the critical characteristic the reflected ray resides just at the other side 
of it. Thus reflection on the critical characteristic itself should result in complete 
back-reflection along that same ray, from which xc is obtained as fixed point of map 
Y (x), i.e. x, satisfies Y (x,) = x,. 

Leftward reflection of an initially rightward moving characteristic should be accom- 
panied by a sign change of s, indicating that one should shift to the leftward map. For a 
supercritical topography then, the complete bi-modal map, T ( x ,  s )  E (Tl(x,  s), T~(x ,  s)), 
is specified by two parameters giving the new surface intersection, Tl(x,s), as well as 
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1 .0 

0.5 

0 

-0.5 

-1.0 
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-1.0 -0.5 0 0.5 I .o 
.Y 

FIGURE 4. Bi-modal map for z = 0.7 with successive surface intersections x,,, n E {0,1,2,3}. The 
rightward (leftward) map is given by the upper (lower) curve; the solid (dashed) part of it indicates 
that the sign is unchanged (changed). Short-dashed lines give graphical construction of successive 
surface intersections. 

the new sign, 7'2(x,s), where T2 E {-1,1>: 

( X ( X ) ,  s) i f s = + l ,  - 1 < x < x ,  
( Y  (XI, -s) i f s = + l ,  x , < x < l  
( -X(-X) ,  s) i f s = - l ,  - x , < x < l  { ( - Y ( - x ) , - s )  if s = -1, -1 < x < -xs.  

(3.5) T ( x , s )  = 

Alternatively, the map can be written as ( x n ,  s,) = T(n i (xo ,  so), where xo and so indicate 
the initial position and direction of the ray and n > 0 (< 0) relates to so = + 1  (-1). 
The map is plotted for a particular value of z in figure 4. The graphical construction 
of successive surface intersections is a slight variation of the usual procedure in 
iterated maps (e.g. Schuster 1984) owing to the bi-modality of the map. For a given 
xo one might read off xI from the graph and then read off x2 etc. a process that is 
reduced by reflection in the diagonal. When an x E [ x s , l )  is obtained for initially 
rightward motion (upper curve) one should shift to the leftward mode (lower curve), 
and vice versa when x E (-l,-xs]. This corresponds to the dashed parts of the map 
in figure 4 and indicates that sign changes occur. The solid parts indicate that no 
sign change occurs. In the remainder of this paper dashing of branches on which the 
map changes sign will be suspended, on the understanding that sign changes will still 
occur according to the definition above. 

In this paper z-values will be restricted by the arbitrary, additional requirement 
that there is at least one point that is mapped simply forward, x ,  3 - 1 ,  or T < 1. 
This restriction is made just for the sake of simplicity, since now characteristics reflect 
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FIGURE 5. Construction of web for z = 0.9 and xo = 0.15 by iterated mapping. Right- and leftward 
‘moving’ characteristics are drawn as solid and dashed lines respectively. The final sense in which 
the limit cycle is traversed has been indicated by arrows. 

from the bottom at most twice prior to reaching the surface. Construction of the map 
for larger values of z can be done along the lines indicated in the Appendix and is 
made explicit there for 1 d z d 3/2. 

3.2. Construction of web by iteration of the map 
Given a single position xi, the complete web, S(XO), can be constructed by forward 
and backward iteration of the map, following the characteristics passing through 
that point both in rightward and leftward directions. In this way, for a particular 
value of z, the web shown in figure 5 is constructed. It is observed that the rays are 
rapidly attracted towards a limit cycle, that can be characterized by the number of 
surface intersections it has. This number is referred to as the period of the attractor 
in accordance with the usage in dynamical systems. There should be no confusion 
with the period of the wave (which, in scaled form, appears here as the central 
parameter z) in (2.6~). Thus, for this particular example, the period of the attractor 
is two. Surprisingly, for this value of z, this limit cycle is the only one present. 
Irrespective of the value xo the same limit cycle is reached. This applies both for 
characteristics ‘initially’ moving to the right as well as for those moving to the left. 
This insensitivity to initial position and direction is a consequence of the symmetry 
of the final attractor. 

For odd-period attractors there are two separate limit cycles (which are each other’s 
images when mirrored in the line x = 0). The limit cycle that will be reached depends 
on starting position, XO, as well as on direction, SO. For the 3-cycle this relation of 
initial values (XO,SO) to the ‘final state’ of the characteristics is illustrated in figure 6. 
An arbitrary (but typical) value of the scaled period (z = 0.72) within the period-3 

interval is sketched in figure 6(a). The attractor with two negative and one positive 
surface intersection will be called the positive attractor (solid line), since the product of 
these three values is positive. Correspondingly its mirror image is called the negative 
attractor (dashed line). The bars in the upper part of figure 6(a) show whether the 
positive (black) or negative (white) attractor is reached for different starting values xo. 
The upper (lower) bar corresponds with rightward (leftward) starting characteristic, 
so = +1 (-1). 

Owing to the combination of starting value and rightward/leftward direction, there 
are four possible final states: 
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FIGURE 6. The two possible attractors are shown (a )  for a typical period ('depth') z in the 3-cycle 
interval (z = 0.72). The horizontal bars on top of the figure show which final state is reached for 
all possible initial values xo and directions so. The upper (lower) bar corresponds to rightward 
(leftward) initial direction, SO = +1 (-1). Black (white) bars denote the solid (dashed) attractor as 
final state. The four possible combinations of the attractors reached (both bars black/white and two 
combinations) are denoted as regions I-IV, and are explained in detail in the text. In ( b )  the locations 
of these regions are given for the whole 3-cycle interval 0.715.. . c c 6 - 3/2 = 0.736.. . . 

(I) the positive attractor (solid line) is reached for both starting directions (both 
bars black), 

(11) the negative attractor (dashed line) is reached for both starting directions 
(both bars white), 

(111) the positive attractor is reached for a rightward (SO = +1) start, while the 
negative attractor is reached for a leftward start (upper bar black, lower bar 
white), 

(IV) the reverse of case 111: upper (lower) bar is white (black). 
In figure 6(b)  the four defined regions are given for the whole 3-cycle interval. 

The approach of the limit cycle can also be appreciated from successive iterations 
directly in a graph of the map. Figures 7 ( a )  and 7(b) give examples of a 2- and 3-cycle 
respectively. In the latter figure the initial position is such that two different attractors 
are reached for rightward (solid) and leftward (dashed) moving characteristics (state 
IV). 

It has been mentioned that the web is to be considered a spatial structure and that, 
in spite of the terminology used, the iterative procedure, by which it is constructed, 
should not be viewed as a temporal process. The global convergence of all webs 



1.0 

0.5 

-0.5 

-1.0 

Geometric focusing of internal waves 
, 1 I 

-1 .o -0.5 0 0.5 1 .o 

13 

-1 .o -0.5 0 0.5 1 .o 
X 

FIGURE 7. Successive mappings in the case of (a) a 2-cycle, xo = 0.15 for t = 0.9 and (b)  a 
3-cycle, xo = 0, t = 0.72. Solid (dashed) lines are used for initially rightward (leftward) moving 
characteristics. 

towards a limit cycle for sufficiently often iterated maps suggests, however, that when 
the field variable that is ‘advected’ along the characteristic is complex, this may 
nevertheless be interpreted as propagation along the characteristic. In particular this 
then implies that distributed fields tend to get focused along the limit cycle. This 
focusing process appears to be generic, and happens irrespective of the precise value 
of the field variable itself. This geometric effect, therefore, seems to be the most 
important factor determining the complete solution. 

3.3. Asymptotic state(s) as a function of z 

The limiting characteristics (limit cycles) can succinctly be summarized by their surface 
intersections (limit points): a Poincare section. Recall that for z < 1/2 the two corners 
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FIGURE 8. Poincark plot of x ~ o o - x ~ ~ ~  of map (3.5) for xo = 0.123456789 and so = +1 in the interval 
112 d T < 1 where T is incremented with 111600 of this interval. Indicated at the top are some 
special values of the map parameter that can be computed algebraically from the lines in figure 10: 
T I  = (9 - & ) / 5 ,  T 2  = (m- 3)/2, T 3  = fi, 14 = 213, T5 = 6 - 312, r6 = 2(Jr j? -  9)/7, 
T7 = $12. 

54 55 

FIGURE 9. Expansion of figure 8 by employing 1600 points to cover the interval 
213 < T < $ - 312 using the same initial value XO. 
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FIGURE 10. ‘Skeleton’ of figure 8. The labels on the lines refer to those in table 1. 

x = f l  are the two limit points. In figure 8 Poincari sections have been plotted for 
a sequence of z-values by taking one particular XO, iterating that along the initially 
rightward direction, SO = +1, a large number of times (here 1100) and plotting the 
last few hundred (here 200) iterates. This plot will be referred to as a Poincari 
plot. This figure shows that there is a complicated dependence of the period of the 
attractor on the map parameter z - the scaled period of the internal wave. Regular 
windows, in which the attractor period stays constant and the limit points gradually 
move out, are interrupted by high-period regions. These high-period windows, in turn, 
appear to have, at a finer scale, a similar fractal-like division in high- and relatively 
low-period windows (figure 9). None of these windows contains chaos, however, as 
will become clear when one considers Lyapunov exponents (see below). For increasing 
values of z each of these windows undergoes a kind of bifurcation towards a point 
where the period increases indefinitely. No regular, period-doubling bifurcation is 
obtained in this case though. Because only the rightward direction has been traced 
here, asymmetric structures appear for odd-period attractors, their mirrored parts 
being obtained for other initial values and/or directions. 

3.3.1. Skeleton of the Poincark plot 

Some of the ‘lines’ that can be discerned in figure 8 can, in fact, be related to 
the two ‘special points’, x,(z) and x,(z), defined previously. The latter one is the 
leftward image of the corner point x =‘ l ,  i.e. -X(-1). Likewise, some of the other 
lines in figure 8 consist of points that are pre-images of the corner points. This is 
shown in the skeleton of the Poincari plot, figure 10. From the intersections of these 
lines, the z-values that specify the borders of some of the windows can be calculated 
algebraically (see caption of figure 8). The functions appearing in figure 10 are given 
in table 1, along with some other frequently used functions. 

The distances between the successive windows, converging at 4/2, do not seem to 
converge at the Feigenbaum rate (Schuster 1984), as might be expected at first. This 
has not been further elaborated yet. 
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Function Definition Expression z-interval 

z (;3 1) 
X(X1) + Xf = 0 

( X  - x)/2 = z(1 - ( X  + x)2/4) 

- - x - 2X(x) 
4x)1'2 

-- - x + (4 + 7 + 7 1 
t 

2 
z 

TABLE 1. Definition and expressions for lines indicated in figure 10. 

3.3.2. Lyapunov exponents 

Even though the windows in figure 8 are reminiscent of the chaotic regions in the 
logistic map (Schuster 1984), they are nevertheless very different. Chaos is associated 
with divergence of nearby trajectories characterized by positive Lyapunov exponents. 
Lyapunov exponents for the bi-modal map in a parabolic basin, however, are always 
less then zero (within numerical precision). 

In figure 11 the convergence rate with which the limiting characteristics are ap- 
proached has been quantified by calculating Lyapunov exponents. The Lyapunov 
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exponent, A+, is defined as 

17 

where Tl (x , s )  is the first part of map (3.5) and xn and s, denote the nth iterates, 
starting from xo and so = +l.  The associated Lyapunov exponent, R-, can be obtained 
by starting with so = -1. The Lyapunov exponent is, in principle, a function of the 
starting position xo. But, typically, the same 2, is obtained for almost any xo. Also, 
the degree to which the true Lyapunov exponent is approximated depends on N 
in a non-monotonic (typically oscillatory) way. Therefore some averaging should, in 
principle, be performed, although for N large this can be safely ignored. 

The Lyapunov exponent measures the total convergence or divergence along a 
characteristic. It is observed that figure ll(a) mimics certain aspects of the Poincare 
plot (figure 8). The latter figure is summarized by calculating the period of the 
attractor, P say, by determining the number of iterations for which asymptotically ( N  
large) a certain x N  recurs with sufficient accuracy, e, i.e. the smallest integer P E IN 
for which I x ~ + ~  - xNI < e. Here N = 900 and e = lo-’ have been used. For visual 
similarity with figure 11 (a), 

v = -1/P 
is plotted, see figure 12. The graph of the Lyapunov exponent shows that the map 
is strongly attracting for regular (low-period) regions of the Poincari plot like in 
the regions with period 2, 3 and 4. In between, the curve is less negative and in 
particular seems to reach zero at some discrete set of points. A blow-up (figure 1 lb, c) 
demonstrates that self-similarity also appears in the Lyapunov exponent, a self- 
similarity that can be discerned in the (inverse) period, figure 12(b,c), too. 

Vanishing of the Lyapunov exponent means that all points retain their mutual 
distances. This can either happen when neighbouring points are all situated at 
distinct limit-cycles of the same finite period (a situation encountered in the rectangle, 
considered in $9, or when they migrate in unison. In the latter case, however, it 
implies that the attractor has infinite period. This is the situation occurring in the 
parabolic basin. 

Note that overall negativeness of Lyapunov exponents implies that the bi-modal 
map is, in the terminology of dynamical systems, dissipative. This happens despite 
the fact that the physical model is inviscid. 

3.4. Integral quantijication of webs 
Figures 8 and 9 are unsatisfactory as a classification of entire webs as they concentrate 
on just the asymptotic part of them, corresponding to the limit cycle. 

Also, in figures 11 and 12 the Lyapunov exponent as well as the period of the web 
have been given for one particular starting value xo, i.e. for one single web. To do 
more ‘justice’ to each complete web one needs integral measures to characterize them 
(as a function of xo). One such measure, the sum of iterates 

N 

n=-N 

has been employed here, see figure 15. This is similar to the Poincare plot, figure 8, 
except that it contains ‘information’ about the whole parameter plane. For most 
values in the (x0,z)-plane this quantity is independent of N (for large values of it) 
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FIGURE 11. ( a )  Lyapunov exponent, A+, as a function of 7, with (b,c) two successive 
enlargements. For each graph 1200 7-values have been used. 

owing to the existence of symmetric limit cycles. Particularly if, for n large, x-, = -x,, 
this sum of iterates stabilizes. For other values of z and xo this antisymmetry of the 
iterates does not exist and a stable value of the sum in (3.6) would be obtained only 
after averaging over the period, M say, of this cycle. Such an averaging has not 
been done in figure 15, though. Similarly, for odd-period attractors that have their 
xo-values in intervals for which forward and backward iteration leads to different 
(mirrored) limit cycles (figures 6 and 7b) ,  cancellation occurs between terms with 
index n and -n. The only contribution to the sum in (3.6) thus comes from small 
(absolute) values of the index n and stays approximately in the range (-1, l), see 
figure 15. Only for z-intervals with odd-period attractors, which have xo-regions that 
reach the sume asymmetric attractor for rightward and leftward iteration, there is a 
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FIGURE 12. v = -1/P. related to the Deriod of the attractor. P .  for N = 1 , ,  , I  00 arbitrarily truncated 
when the period is in excess of 400, as a function of 7 with (b,c)  two successive enlargements; (c) 
suffers from numerical convergence problems, though. 

net ‘drift’ (N-dependence) of p~ (the dark regions in figure 15). The sum of iterates 
is an odd function of xo owing to the symmetry of the topography. 

3.4.1. Conjecture : two-parameter independence of infinite sum of iterates 

There exist regions where p N  is constant to within round-off error. These are 
particularly visible as the white regions in figure 15 (where p N  = 0). This allows us to 
conjecture the following, surprising two-parameter independence of an ‘infinite’ sum 
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FIGURE 13. For caption see facing page. 
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FIGURE 15. For caption see facing page. 
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of iterates: 
21 

Since, for the region indicated, sign changes occur at every reflection from the bottom 
(see figure 7), just the second and fourth alternatives of (3.5) apply. Hence this can 
also be rewritten as 

where 
N 

TN(x, 7) = x + z ( - l ) " ( g ( " ) ( x ,  z) - g(")(-x, z)), 
n=l 

with a recursively defined g(")(x,  7): 

g("+')(x, z) = g(g(")(x,  z), z), 

and 

g(')(x,z) = g(x,z) = -- - x + 2  4+ - + - 
z ( 7'2 431/2 

No rigorous proof for the validity of this conjecture has been obtained as yet, 
however. Figure 15 suggests that similar algorithms should exist in other regions of 
the parameter plane where ,urn approaches a constant. No formulation of these has 
been attempted, though. 

3.5. Relation to a billiard 
The construction of the web of reflecting characteristics can be viewed as an alternative 
to the classical billiard problem (Berry 1981). A 'billiard' is defined as a closed region 
of the plane for which the trajectory of a point particle is studied. The particle 
reflects elastically according to the law that the angle of reflection equals that of 
incidence with respect to the normal to the boundary at the point of incidence. 
Successive bounces label the orbit of the particle and can be described by the distance 
along the boundary and the angle of incidence. This constitutes a mapping of a 
(related) two-dimensional parameter space onto itself. Three types of behaviour are 
encountered: first, periodic motion when an orbit closes onto itself; second, motion 
in parameter space along an invariant curve; and third, chaotic motion in which part 
of the parameter plane is traversed. The actual behaviour depends on the shape of 
the boundary and the particular aspect ratio it has. 

For acoustic waves, the spatial structure is determined by an (elliptic) Helmholtz 

FIGURE 13. Sum of iterates, p~ for map (3.5) as a function of t (601 points) and initial position of 
web, xo (601 points). Number of iterates is 2N + 1 = 399. About 95% of the values of pN reside in 
the -1 (bright blue) to $1 (bright red) range. White indicates a zero value of pN. 

FIGURE 15. ( a )  Function f ( x ) ,  specified in the two primary fundamental intervals (hatched parts 
of .x-axis indicated at the top, corresponding to those indicated on the right-hand dashed line of 
figure 14a), and subsequently calculated values of f ( x )  in remaining parts of domain for. t = 0.9. 
( b )  Spatial structure of streamfunction field, tp(x,z), obtained from f ( x )  with (2.8). Zero value of 
the streamfunction field is indicated with green. Values range from -2 (dark blue) to +2 (dark red). 
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equation. For a monochromatic wave in the WKB-approximation, there exists a 
one-to-one correspondence with the billiard problem (Abdullaev 1993), in which the 
wave rays obey the specular law of reflection. In particular this implies the possibility 
of chaos in ray dynamics. The internal wave rays, determined by the map in (3 .3 ,  
however, are more constrained, since a different reflection law operates: motion can 
occur only in two directions (labelled by s). Thus we are dealing with a reduced 
parameter space. Apparently, as a consequence, a different type of behaviour - 
focusing of trajectories - is observed. Negative Lyapunov exponents have not been 
encountered in the standard billiard. Conversely, in the internal wave problem, no 
positive Lyapunov exponents - the hall mark of chaos - have been observed. The two 
types of billiard thus seem to have complementary features. 

4. Standing internal-wave patterns 
Having obtained the geometrical structure of the rays we are now in a position to 

specify the field variable f(x) on one or more independent fundamental intervals at 
the surface. Having specified this the function can be determined completely at each 
point of the surface domain. With this specification, according to (2.8), the value 
of the streamfunction field at any point within the basin can be readily obtained as 
the difference of the f-values carried along the characteristics which intersect at this 
point. 

The first question we have to address is whether we can specify non-overlapping 
fundamental intervals. This question has here been solved by inspection in two 
simple cases: in z-intervals with asymptotic cycles of period 2 and 4. Consider in 
figure 14(a) the vertical line at the right, in the region with asymptotic 2-cycles. The 
two hatched parts of that line indicate the two independent intervals on which f(x) 
can be arbitrarily specified. Figures 14(b) and 14(c) show that rays coming from 
these regions are mutually exclusive and plane filling. These constitute two separate 
domains of attraction even though the attractor itself is the same. The ‘inner’ domain, 
figure 14(b), is seen to be affected by just a particular part of the bottom and it 
is independent of any deviations that the bottom might exhibit in the outer (or 
central) region, like a flattening of the bottom, characteristic of near-shore shoaling. 
Similarly, the ‘outer’ domain, figure 14(c), is unaffected by the shape of the bottom 
in the intermediate regions (that is, as long as the bottom does not intersect any of 
the wave rays above it). Notice that there are regions in which the orthogonal rays 
come from both domains. Conversely there are complementary regions for which 
one ray comes from the inner and one from the outer domain. It is also remarkable 
that the critical characteristics, situated in the inner domain, act as repellors, thus 
downplaying the relevance of the failure of linear, inviscid theory in that case 
(Cacchione & Wunsch 1974; hey & Nokes 1989). Consistent with existing theory, 
however, it is observed that downward reflection from the supercritical part of the 
sloping bottom always leads to convergence of wave rays (focusing of characteristics), 
a focusing which is partly offset by subsequent reflection from the bottom leading 
to divergence of wave rays. The net effect of focusing and defocusing is, owing to 
a larger ‘scattering cross-section’ - the interval-size over which focusing/defocusing 
extends - necessarily dominated by the former, so that net convergence of wave-rays 
is the rule. This will be more explicit for the ‘bucket’-topography, considered in 
§6. 

In figure 15(a) an example is given in which f(x) is specified to be a sine with an 
offset in the two fundamental intervals. The offset has been chosen of a different sign 
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FIGURE 14. (a) Selection of the 'skeleton', figure 10, of the Poincare plot for the parabolic basin with 
two vertical lines in the regions where 2- and 4-cycles exist. Hatched parts of these lines indicate 
primary (fundamental) intervals for this t, where function f(x) can be arbitrarily specified. (b)  Rays 
coming from the inner and (c )  outer primary fundamental intervals in the specific 2-cycle case. The 
location of the primary intervals has been indicated at the top of these last two figures. In the latter 
case this is ambiguous as the mirrored interval might also be adopted as the primary interval. 

in the two regions. Based on its prescribed value in the primary fundamental intervals 
f(x) has been determined for all x E (-1,l) with the aid of (3.5), see figure 14(b,c). 
From this graph the standing wave pattern y (x , z )  has been obtained, Figure 15(b). 

On the vertical line at the left in figure 14(a) the regions have been indicated 
where primary fundamental intervals reside in the case of a 4-cycle. Again, just two 
independent intervals arise, suggesting this to be true for each even-period attractor. 
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In contrast, preliminary analysis shows that for odd-period attractors three such 
regions exist. 

Because of the fact that the fundamental intervals constitute finite-sized domains 
an arbitrary function f ( x )  can be specified on these intervals by a Fourier series, 
which, depending on the symmetry or antisymmetry of this function, is given by a 
cosine or sine series. The two classes of ‘solution’ constructed in this way are similar 
and comparable to (though not as explicit as) those obtained by Wunsch (1968) for 
a wedge. That is, they represent ‘blinking’, standing internal-wave patterns. Wunsch 
(1969) argued, however, that laboratory observations, as well as field experiments, 
showed that internal wave energy (for the subcritical wedge) only approaches the 
wedge and does not return to form a standing pattern. This is more adequately 
described by a field of waves whose phase and group velocity have a component 
in the direction of the corner, such as obtained by a linear combination of the two 
standing wave solutions. In a similar vein, here too it is unlikely that standing wave 
patterns are obtained as there will be no ‘reflection’ from the attractor. It is therefore 
necessary too in this case to construct a propagating wave pattern that has phase and 
group velocity which have components approaching the attractor. Propagating wave 
solutions have not been addressed in this study though. 

The solutions discussed above are in a sense ‘free’ or unforced solutions. Forcing of 
internal waves can be due to a variety of mechanisms, see Krauss (1973). In this study 
we will, for the sake of simplicity, restrict ourselves to forcing by pressure variations at 
the surface, because a specification of the pressure means a direct specification of f ( x ) .  
From the description of u by means of a streamfunction we find, non-dimensionally, 
u(x,O,t)  = 2f’(x)exp(-it). Vanishing of the horizontal velocity field in the corners 
therefore requires f’(i-1) = 0. With (2.la), applied at the surface, z = 0, we find 
that f ( x )  is directly related to the pressure which is assumed to be given by the air 
pressure, p , (x )  : 

Note that the imaginary unit implies an out-of-phase relationship of pressure and 
f.  This, however, demonstrates the paradoxical nature of this kind of specification, 
because, apparently, is one free to specify surface pressure only in one, or two 
disconnected fundamental intervals. Specifying the pressure, proportional to f ( x ) ,  
over the whole interval must inevitably lead to inconsistencies. The paradox is 
resolved by concluding that only when such inconsistencies do not arise is one able to 
construct stationary solution-patterns for the frequency under consideration, but that 
otherwise, one necessarily has to employ internal-wave solutions that propagate away 
from the forcing area. This still assumes the forcing to be stationary. The solution 
of a true initial value problem for closed basins is further complicated by the fact 
that the wave field has to satisfy a radiation condition to guarantee causality (Baines 
1971u), a problem which indeed has, to our knowledge, not even been solved for the 
rectangle. 

5. Explicit solutions: the rectangle and semi-ellipse 
Having obtained a solution of the spatial hyperbolic equation ( ~ S U ) ,  with boundary 

conditions (2.5b), in the parabolic domain by solving the functional equation (2.10~)- 
(2.10b) makes one wonder what the ray method yields in a geometry for which 
solutions can also be obtained by another method. Two such geometries, the rectangle 
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and the semi-ellipse will be discussed now. Solutions for the first are well-known from 
literature, those for the second geometry are derived below. 

5.1. The rectangular basin 
It is well-known that in the case of a rectangle (2.5a)-(2.5b) can also be solved by 
separation of variables and yields 

(5.1) ~ ( x ,  z )  E a1 sin mnx’ sin nnz’, 

where x’ s (x + 1)/2 and z’ = z/z, provided non-dimensional depth (z) is a rational 
number: z = 2n/m, with mutual prime numbers m, n E IN. Here al is an undetermined 
amplitude of the mode (suppressing the dependence on the mode numbers). This 
(rn,n)-mode is not unique for the frequency o (map parameter z, see (2.6~)) under 
consideration, since, as Miinnich (1994) remarks, any multiple - a (jm, jn)-mode, with 
j E IN - equally satisfies the hyperbolic equation while vanishing at the boundary. In 
this terminology, used in Munnich (1994), an (m, n)-mode describes a cellular pattern 
with m horizontal and n vertical cells. This non-uniqueness can be employed to 
directly solve the forced problem, when the forcing is by pressure variations imposed 
at the top in a fundamental interval. A fundamental interval at the surface is, 
in this case, recognized below as an interval in between two zeros of the gravest- 
mode streamfunction field (see figure 16). The response to an arbitrarily shaped, 
oscillatory pressure field in that interval is directly obtained as the sum over the 
Fourier modes of that function, which act as the amplitudes of the gravest and 
higher-order streamfunction modes. 

5.1.1. The map 
The characteristic theory applied to the rectangle has been discussed in Magaard 

(1968). He also included the effect of sheared mean currents, which gives an asymmetry 
in the leftward and rightward sloping characteristics. In the absence of sheared 
currents, map T ( x , s ) ,  for a rectangle of depth z, has the same form as ( 3 3 ,  where, 
in this case, 

x, = 1 - 22 (5.2) 
and 

X ( x )  = x + 22, (5 .3~)  

Y ( x )  = 2(1 - z) - x = 2 - X ( x ) .  (5.3b) 
The behaviour is strikingly different for rational and irrational values of z. In the 
former case the map has a periodic structure such that each xo, after a fixed, finite 
number of iterations, turns exactly back to its starting value. In stark contrast, for 
irrational values of the map parameter (which, recall, may alternatively be interpreted 
as the period of the wave, or the depth of the basin) the trajectory of each xo comes 
arbitrarily close to any point in the domain. Remarkably, this difference in behaviour 
is not signalled by the Lyapunov exponent which, being the sum of the logarithm of 
the absolute value of the derivative of the map, identically vanishes for all values of 
z, as inspection of (5.3a)-(5.3b) tells us. The map thus is neutrally stable, but may 
either have an infinite set of closed orbits (on which the field variable, f ( x ) ,  can be 
freely specified), or just one single orbit, such that only one value of f ( x )  can be 
specified, which leads, according to (2.8), to an everywhere-vanishing streamfunction 
field. The artificial restriction used in the discussion of the parabola to values of z 
for which there is at least one x for which just the forward map, X ( x ) ,  applies (z < 1)  
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FIGURE 16. (a )  Definition sketch for the (3,l)-mode (t = 2/3) of the rectangle. There are three 
fundamental intervals at the surface, in between successive zeros of the streamfunction field. 
Specifying the surface pressure in one of these intervals allows one to determine the amplitudes of 
the higher harmonic structures - (3j, j)-mode, j E IN - as the Fourier amplitudes of the specified 
spatial pressure structure in that interval. Two closed rays have been drawn. (b) Streamfunction 
field y = sin 3nx'sin nz' for t = 2/3, corresponding to ( c )  f(x) = (cos 3nx')/2. In (c )  the solid part 
of f(x) has been specified, while the dashed part has been inferred. 

limits our solutions to those which have at least two fundamental intervals in the 
x-direction. This restriction can, of course, easily be eliminated. In particular the 
square domain (z = 2), also discussed by Magaard (1968), has a single fundamental 
interval stretching out over the entire x-domain, for which each surface-point lies 
on a period-1 characteristic. The rays in the basin corresponding to the example in 
figure 16 illustrate that the fundamental interval in this case is 1/3 of the size of the 
x-domain and also that each xo lies on a 3-cycle. That is, x3 = x0,Vxo E (-1,l). 
Compilation of a figure with the asymptotic state of the trajectories, like figure 8, 
shows a heavily dotted, structureless set due to the fact that the adopted discretized 
values of z, employed in the construction of that figure, correspond to very high-period 
cycles, because the numerator of the rational number, going with those z-values, is 
very large. 

5.1.2. Determination of streamfunction jield by characteristic method 

For f(x), given in a fundamental interval, this function can be determined over the 
whole x-range (figure 16c). From this, the streamfunction field is directly determined 
by (2.8) for z + 1 > 1x1. Near the vertical boundaries rays are reflected and the 



Geometric focusing of internal waves 

complete description of the streamfunction is given by 

f (x  - z )  - f ( x  + z) 
f ( 2 - x + z ) - f ( x + z )  f o r z + l  < x  
f ( x  - z) - f(-2 - x - z )  

for z + 1 > 1x1 

for z + 1 < -x. 
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Although f ( x )  can be specified at will in any of the fundamental intervals it is 
now clear that the same streamfunction field can also be obtained from the modal 
solutions (5.1) as 

00 

y(x, z) = C aj sin jmnx’ sin jnnzl, (5.4a) 
j= 1 

where 
-1+2/m 

a, = 1, f ( x )  sin jmnx’dx (5.4b) 

are the Fourier components of f ( x )  on the first fundamental interval x E (-1, -1 + 
2 / m ) .  The two methods thus yield the same results and the indeterminacy is in both 
cases resolved by specifying the ‘pressure’, f(x), in one fundamental interval only. The 
characteristic method, however, is more direct and enjoys a slight preference over 
the modal method as no Fourier decomposition is needed. The superiority of the 
characteristic method becomes more evident, however, in the case that ‘non-trivial’ 
topographies are taken into consideration ($54 and 6). 

5.2. The semi-elliptic basin 
There is at least one other class of ‘bottom’ profiles for which the solution of the 
hyperbolic equation can be dbtained in terms of modes: the ellipse. Since this 
equation is to be solved in cases where there exists a flat surface this is here further 
restricted to the semi-ellipse. As for the rectangle the trajectories are either periodic, 
or of infinite period. No previous derivation of this set of solutions exists as far as the 
authors are aware, but it can be readily derived by a variation of complex function 
theory. 

It is well known that the Laplace equation, 

is solved by the real and imaginary parts of arbitrary functions F(x+iy). In particular, 
the polynomials (x + iy)f’, with p E IN, have simple expressions. For instance, for 
a cubic ( p  = 3) one finds that both x3 - 3xy2, and y 3  - 3yx2 satisfy the Laplace 
equation. By simply replacing y = iz in both the Laplace equation and its solutions, 
functions satisfying the hyperbolic equation ( 2 . 5 ~ )  are obtained. From the example 
of the cubic we find, by adding a linear term, that we thus obtain an explicit solution 
also satisfying the boundary condition ( 2 3 )  at z = -z(1 - x2)’I2: 

y = z(z2 + 3(x2 - l)), 

provided the ‘depth’ z = 8. Since this consists of just one circulation cell we might 
consider this as the (1, 1)-mode of a semi-ellipse. It appears that more complicated 
modes are obtained by considering higher-degree polynomials (in general, a particular 
combination of either even or odd polynomials). In this way the first few cellular 
modes, listed in table 2, have been obtained (see also figure 17). For the rectangular 
basin it was argued that any frequency that is a rational number is an eigenfrequency 



28 L. R. M. Maas and F.-P. A. Lam 

P ( w n )  t Y(X> z) 

3 ( L 1 )  J5 
4 (291) 1 

z(z2 + 3x2 - 3) 
xz(x2 + 2 2  - 1) 

6 1 / 8  xz(z2 + 3x2 - 1)(x2 + 322 - 1) 
6 (2,2) J5 xz(z2 + 3x2 - 3)(x2 + 322 - 3) 

5 (3,1) ( 5  - 2fi)l” z(z2 + ( 5  - 2fi)(x2 - 1))(z2 + ( 5  + 2fi)x2 + (fi - 5)/2) 
5 (1,2) ( 5  + 2fi)l” z(z2 + ( 5  + 2fi)(x2 - 1))(z2 + ( 5  - 2,/3)x2 - (8 + 5)/2) 

TABLE 2. Expressions for the streamfunction field satisfying the hyperbolic equation and vanishing 
at the surface, z = 0, and semi-ellipse, z = - ~ ( 1  - x ’ )~ /~ .  Columns give respectively: power 
of polynomial p ,  modal structure (m,n)  denoting the number of horizontal and vertical cells 
respectively, t related to the eigenfrequency, and streamfunction field ~ ( x ,  z). 

and, moreover, that each frequency is infinitely degenerate, because of the existence 
of multiples of the modal structure: modes ( j q j n ) ,  j E IN. For the (semi) ellipse 
this happens too, except that the eigenfrequencies are now no longer rational, but 
rather a subset of the real numbers. The infinite set of eigenfrequencies for the ellipse 
can be ordered (and be made denumerable) by the modal structure of the related 
streamfunction field. Also, by association of the modal structure with the corre- 
sponding structure in the rectangle one finds a one-to-one correspondence between 
both infinite sets of accompanying eigenfrequencies. The enumeration of successively 
more complicated modes proceeds on the (m, n)-lattice along lines rn + 2n = p ,  where 
p E N denotes the highest power of the polynomial under consideration. Thus for 
p = 3 and 4 we find just the (1,l)- and (2,1)-modes, respectively. For p = 5 ,  however, 
there are two modes satisfying this constraint, which provides us both with the (3,l)- 
and (1,2)-modes. Algebraic computation of the eigenfrequencies gets increasingly 
more complicated, although one should not have difficulty finding a good numerical 
approximation to the eigenfrequencies along these lines. 

Not only do we find a denumerable, infinite set of eigenfrequencies, but also each 
eigenfrequency is degenerate. For the same frequency, multiples of fundamental 
modes exist (for which m and n do not have a common divisor), as the first and 
last rows of table 2 indicate. The last mode ( p  = 6) has the same eigenperiod as the 
first mode ( p  = 3), but has twice the number of cells in the horizontal and vertical 
direction. 

As for the rectangle it can be verified that x, = xg for each xg in the interval 
xg E (-l,l), for some m E IN. There are thus infinitely many, closed rn-periodic 
orbits. In contrast, for the parabolic basin, periodicity of the map was obtained only 
asymptotically and then approaches just one or two closed orbits, which are reached 
irrespective of the starting value of xg. There thus appear two types of internal-wave 
solutions, which strongly depend upon the shape of the boundary. 

In the case of the semi-ellipse the streamfunction field can also (and more readily) 
be constructed by means of the characteristic method along the lines indicated above. 
This has not been elaborated here. For completeness we give the bi-modal map, 
T ( x ,  s) ,  which is defined by ( 3 3 ,  with 

xs = ( P  - 3 ) / ( P  + 1) (5.5) 

with p E 1 / ~ *  (assumed to be larger than one, to restrict oneself again to at most two 
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FIGURE 17. Nodal lines (w = 0, thick solid) and streamlines (positive: thin solid, and negative: 
dashed) for the exact modal solutions of the hyperbolic equation, within a semi-ellipse of 'depth' t 
equal to (a) 8, ( b )  1, (c )  ( 5  - 2,,6)1/2, ( d )  ( 5  + 2 f i ) ' / * ,  ( e )  l /& (f)  8. For visualization purposes 
the z-coordinate has been rescaled such that the basin acquires one and the same semi-elliptical 
shape which implies that the characteristics in this representation have a direction related to the 
period of the wave (as given by the above values of 7). 

reflections at the bottom) and 

( p  - 1)x + 2( 1 + p( 1 - x2))1'2 

1 + P  
X ( x )  = , ( 5 . 6 ~ )  

As for the rectangle the Poincari plot of successive reflections of a ray yields a 
featureless dotted figure, while the Lyapunov exponents afe also zero to within the 
numerical accuracy of its computation. 

6. The 'bucket' and other basin shapes 
The rectangular and semi-elliptic basins have nice, cellular patterns of the stream- 

function field as solutions of the hyperbolic equation. Since these modal structures 
are to be multiplied with a sinusoidal temporal variation these have traditionally been 
interpreted as the internal, seiching modes of the basin (Defant 1941). It appears, 
however, that this behaviour is not generic, as the example of the parabolic basin, $63 
and 4, has shown. On the contrary, from a number of examples considered we get the 
impression that these two cases are exceptional. Instead, in general, seiching modes 
are either absent and focusing of the internal wave field to a well-defined attractor 
appears to be the rule, or, as we will try to demonstrate with the following example, 
hybrid situations may arise that exhibit the existence of both regular (neutrally sta- 
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ble) modes, as well as focusing (with, as its limiting case, infinite-period, plane-filling) 
orbits. 

6.1. Bucket-shaped basin 
Consider a bucket-shaped basin given by 

This ‘bucket’ is a two-parameter topography, with d the relative size of the interval 
where the bottom is flat compared to the width of the basin. This geometric quantity 
is normally regarded fixed. The second parameter, pl the tangent of the angle of 
the sloping sidewall, is, by our convention to put the frequency of the internal wave 
into the apparent depth, a variable quantity. The dimensionless depth is given by 
z = p(1- d ) .  The bi-modal map corresponding to this case is given by (3.5) with 

X, 1 - 2/41 - d) (6 .2~)  

and 
X ( x )  = x + 2&(1 - d), 

d - p + d p  
(6.2b) 

For d = 4/5 a Poincari plot of the asymptotic values of the surface intersections 
is given in figure 18(a). The upper bound of p = 1/(1 - d) has again been chosen 
to restrict the mapping to a regime where bottom reflections occur at most twice. 
It demonstrates that there are a number of windows with low-period attractors 
accompanied by other windows of very high-period attractors. This figure looks like 
an incomplete version of figure 8. In fact it has features in between those of the 
parabola and those displayed in the rectangle to which it approaches for d + 1. In 
the latter limit the compact, low-period windows vanish. If d drops below a half 
(d < 1/2), however, the ‘noisy’ windows disappear and we are just left with a period-2 
window for all frequencies in this band! (The latter configuration is presumably the 
easiest case for testing the occurrence of focusing in a laboratory experiment). 

6.1.1. Lyapunov exponents 
It is worthwhile to notice that the Lyapunov exponent in the case of the bucket is 

particularly easy to determine. If we look at map (6.2a)-(6.2c) it is obvious that the 
only contribution comes from parts where the slope is not equal to one. The slopes 
of the map for the remaining two cases, see (6.2c), however, are reciprocal and the 
logarithm of its value, h[(p - l)/(p + l)], can thus be factored out. The remaining 
determination of the Lyapunov exponent, then, reduces to simple book-keeping of the 
number of times for which the ‘divergent’ (steeply sloping), ‘neutral’ (slope equal to 
one) and ‘convergent’ (weakly sloping) parts of the map are reached by a particular 
ray. This factor can be recognized in the generally increasing form of the Lyapunov 
exponent. In fact, the dashed curves in figure 18(b), related to this function, match 
exactly for the low-period attractors. This is because, e.g. for the 2-cycle, for the 
particular starting position adopted, points successively sample only the convergent 
branches of the forward and backward map (which have the same slope). Indeed, 



Geometric focusing of internal waves 

0 - '  ' ' ' ' ' ' ' ' ' ' J 

(c> ; 
-0.1 . - 

L 

-0.2 - 

V 

-0.3 - 

-0.4 . 

-0.5 - .  

31 

X 

0.8 

0.4 

0 

-0.4 

-0.8 

0 -  

-0.2 ' 

-0.4 . 

,I.+ -0.6 . 

-0.8 . 

-1.0 . 

-1.2 - 

1 2 3 4 5 
c1 



32 L. R. M. Maas and F.-P. A. Lam 

normalizing the Lyapunov exponent with this logarithmic curve would enable us to 
calculate (twice) the period, figure 18(c), rather than determining the latter (or, its 
related value, v )  numerically. 

6.1.2. Resonance 
In figure 18(a) we clearly recognize the 2-, 4-, 6- and 8-cycles. Suspiciously lacking, 

however, are the odd-period attractors, with, most notably, the period-3 attractor. 
Closer inspection of this figure, however, shows that this interval has not vanished 
altogether, but rather has shrunken to the size of a point (located at p = 3 for 
this value of d ) .  Surprisingly, as a phoenix rising from its ashes of almost-zero 
(infinite-period) Lyapunov exponents, we recover a neutrally stable, period-3 mode 
(see figure 18b,c)! Each initial value returns to that same value after three mappings. 
A global attractor no longer exists. Other stable, periodic modes are obtained in 
the Lyapunov diagram whenever the Lyapunov exponent approaches zero both for p 
coming from above as well as from below the point where it exactly vanishes. For 
instance, at p = 9/5 we find a period-5 mode. These periods have also been captured 
in figure 18(c), and appear there as spikes. Higher-period stable modes have not been 
resolved, however, and can only be detected by the above-formulated rule-of-thumb. 

The stable 3-mode appears to be present for every value of d > 1/2. Its p-location 
in figure 18(a) can be obtained from the observation in figure 19(a) that it occurs 
when the ray stemming from the upper corner reaches the opposite corner at the 
bottom (that now contains the critical characteristic) : 

x, + x, = 0. 

Figure 19(a) shows a sketch demonstrating the configuration of these rays for this 
(3,l)-mode. Generalizing this to arbitrary d one may obtain this mode at a value of 
p determined by the requirement that 3p( 1 - d) + 1 - d = 2, or p = (1 + d)/3( 1 - d ) ,  
as inspection of this figure shows. Likewise, for mode (m, l), p = ( 1  + d)/m(l - d )  
yields the ‘eigenperiods’ z = (1 + d)/m for which neutrally stable modes exist. Since 
we require p > 1, in order for the bucket topography to be supercritical, this implies 
that a finite number m, exists, where m, equals the largest integer smaller than 
(1 + d ) / (  1 - d), such that m d m,. 

Of course, there also exists a (1, 1)-mode for which a ray emanating from the 
corner directly intersects the opposing bottom corner, but that has been excluded 
from consideration by our artificial requirement that reflection at the bottom should 
occur at most twice prior to the surfacing of the ray. This led us to require 
p < 1/(1 - d ) ,  or z < 1. The above criterion, applied to n = 1, would yield p = 9 
for d = 4/5 and is therefore formally outside the range of figure 18. Extension of the 
algorithm that computes successive surface intersections when the rays make multiple 
reflections at the sidewalls does not cause any difficulties in principle though. In 
particular the (1, 1)-mode is computed below, albeit for a different value of d.  

6.1.3. Analytical solution 
An analytical solution for the (1, 1)-mode for d = 1/2 and p = 3 has been reported 

on by Cushman-Roisin, Tverberg & Pavia (1989) modelling a fjord environment. 
They considered a continuously stratified fluid within a bucket-shaped trench at the 
bottom of a broader, otherwise flat basin. The (oscillatory) flow in the main basin 
being prescribed (having a spatial part of the horizontal velocity field u = x - 1, 
corresponding to a stagnation flow) a solution in the bucket is sought that has no 
slip at the interface (the top of the bucket). With this prescribed velocity field at 
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FIGURE 19. (a) Ray configuration in the case d = 4/5 and p = 3. Also indicated are intervals at the 
surface, used in the text, relating to these two parameters. ( b )  Definition of regions for a bucket 
with d = 1/2 and p = 3. Here y = z + 1. 

the top and the subsequent requirement that the streamfunction field vanishes at 
all the boundaries they obtained, apparently by inspection, an exact solution of the 
hyperbolic equation describing a stationary wave pattern of the internal-wave field in 
the trench. With a displaced vertical coordinate, y = z + 1, it is given, in terms of the 
streamfunction, by 

(Y - l)(x - 1 1 7  
(y - x ) ~  - (y + x - 2)2/4, 

X7Y E 1 
X,Y E I1 

X7Y E IV, 
(6.3) ”= ( ~ - y ) ~ / 4 - ( 1 + x + y ) ~ ,  x , y ~ I I 1  { -( 1 + 2x)( 1 + 2y), 

where the four regions have been indicated in figure 19(b). This solution for the 
streamfunction is depicted in the lower panel of figure 20(a). It is characterized by 
the existence of a vortex sheet (along y = -x) due to the fact that the prescribed 
horizontal velocity field does not vanish in the left-hand corner, f’(-1) # 0. The 
occurrence of a vortex sheet is typical in the generation of internal tides as observed 
in theoretical (Wunsch 1968, 1969; Robinson 1969; Larsen 1969) and experimental 
(Sandstrom 1969; Baines & Fang 1985) models, as well as, to some extent, in 
numerical models and nature (deWitt et at. 1986). Cushman-Roisin et al. (1989) used 
this solution to validate their numerical model. They remark that “notwithstanding 
the authors’ effort no other nontrivial analytical solution has been found”. However, 
we may recognize their solution as a particular case of the general solution obtained 
with the characteristic method, which would read: 

f (x  - Y + 1) - f ( x  + y - 11, X,Y E 1 
f ( l - 2 x + 2 y ) - f ( x + y -  l), x,y E I1 
f (x -Y+l ) - f ( - l -2 (x+y) ) ,  x,y E 111 
f( l -2x+2y)-f(- l -2(x+y)) ,  x,y E IV, 

(6.4) 
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where f ( x )  can be specified at will along the surface domain (the entire domain now 
being a fundamental interval). This function, f ( x ) ,  has the same meaning as before, 
being related to the surface pressure, equation (4.1), while its derivative relates to 
the horizontal, surface velocity field. The streamfunction field (6.3) is obtained with 
f ( x )  = (x - 1)2/4. This function has been displayed in the upper panel of figure 20(a). 
A few other choices of f(x) and their corresponding streamfunction fields, obtained 
from (6.4), are shown in the other panels of that figure. In particular, we note the 
absence of free shear layers when the derivative of the prescribed function f ( x )  - 
the horizontal component of the velocity field - vanishes at the corners, f’(*l) = 0, 
(figure 20b). 

The (1,l)- and (3,l)-modes, determined above, are characterized by the fact that 
a ray connects the surface corner with the opposing bottom corner. It is natural 
to inquire what happens when corner points are connected differently. Thus when 
a surface-corner point is connected with an adjacent bottom corner we obtain for 
instance the (1,2)- and (3,2)-modes, the latter occurring when p = [l + d + 2(1 - 
d + d2)1/2]/3(1 - d). Connecting two surface, or two bottom corner points (for the 
situation depicted in figure 18 occurring at p = 5 and 4 respectively), however, does 
not yield the missing even horizontal modes, since these are clearly observed to have 
negative Lyapunov exponents and thus to consist of focusing modes. Physically 
this is obvious, since, following a ray, in this case the sloping sidewalls are always 
approached from above, which leads to convergence of wave rays. In contrast, for 
odd modes (in the case that there is a ray connecting the surface and bottom corner) 
the left and right sloping walls are approached successively from above and from 
below, so that convergence is exactly offset by subsequent divergence. 

Resuming, the ‘bucket’ is a truly hybrid geometry, showing both focusing and 
neutrally stable (‘seiching’) modes. Of the latter, the modes with an even number of 
cells in the (x) direction are entirely absent, while also only a finite number of odd 
modes appear. Although it is nice to have explicit solutions in those cases where 
the rays are strictly periodic (neutrally stable - folding back upon themselves), it is 
necessary to emphasize that these form a very restricted class amongst all possible 
solutions, see figure 18(b,c). It is just for the particular frequencies corresponding to 
these cases that such a solution (a ‘resonance’ in the terminology of Cushman-Roisin 
et al. 1989) exists. (Curiously, these authors fail to identify their example of the 
(1,l)-mode, discussed above, in terms of a resonance, even though it is the prototype 
example in which each characteristic returns to its original position in one iteration: 
x1 = xg.) For all other frequencies rays are attracted to a particular limit cycle and 
focusing should thus be considered as the generic behaviour. 

6.2. Other basin geometries and artificial maps 
A basin with a flat bottom, z, for x E [-d, d] with convex sidewalls which are segments 
of a hyperbola z[l - ( ( x 2  - d2)/(1 - d2))’12], for 1x1 E (d, 11 has also been analysed. 
Here central depth is defined as z = b(d-2 - 1)1/2, with b E (d/( 1 - d2)l/*,d(l - d2)’l2), 
in order for the sidewalls to be supercritical and restricting the number of bottom 
reflections to at most two. For given value of length scale d, the Poincark plot, 
the Lyapunov exponent and period of the asymptotic state have been computed 
as a function of b. The results are qualitatively similar to those obtained for the 
parabolically shaped basin. Upon cursory inspection no neutrally stable mode is 
obtained; all asymptotic states are globally attracting. The result does, of course, 
depend upon the particular value of d, but this does not invoke a qualitative change. 

Each of the maps considered so far have two lines of symmetry, namely the lines 
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FIGURE 20. Plots of f (x)  (upper part) and corresponding streamfunction field (lower part) for a 
bucket with ‘depth’ 3/2 (d  = 1/2, p = 3) for f ( x )  given by (a) (x - 1)’/4, (b)  x3/3 - x, (c) x3 - x, 
( d )  exp[-(5x/2 - 3/4)*]. 

y = fx (if we designate the successor of x momentarily as y), see figure 4. To examine 
the effect of asymmetries in these maps various other topographies and also artificial 
bi-modal maps have been considered. For instance, a skew parabolic basin, which 
matches two parabolas at a trough which is located off-centre (see Munnich 1994), 
has a map for which the symmetry in the line y = --x is broken. As a result the 
corresponding PoincarC plot is also no longer symmetric, owing to an asymmetry in 
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the attractors. However, qualitatively, nothing happens : the same alternation of low- 
and high-period attracting regions, with changing values of z, is obtained as for the 
symmetric case. Artificially breaking the second symmetry, by adding linear terms to 
the map under the restriction that the position and height of the map’s maximum 
stay fixed, also does not yield very different results. 

Finally, an abstraction of the bi-modal map has been considered. Each of the 
forward parts (upper curve) of the ‘realistic’ maps considered (like in figure 4) has a 
single maximum, to the left (right) of which the sign is invariant (changes). Also, the 
backward map (lower curve) is a point-mirrored version of the forward map (upper 
curve). Adopting a simple parabola, 1 - (x - b)2/(1 + b2),  with b E (-1,l) as forward 
map, a completely artificial bi-modal map is examined. It turns out to have features 
in common with the ‘bucket’: firstly, it has both low- and high-period windows, 
secondly it has Lyapunov exponents which are always less than or equal to zero, and 
thirdly, it has particular values of b for which resonances exist (exact vanishing of the 
Lyapunov exponent and, as a consequence, each point lies on its own stable orbit). 
It is thus expected that these features are quite common and should be expected to 
occur in more realistic circumstances too. Further examination of these and other 
cases is necessary, though. 

7. Discussion and conclusions 
7.1. Focusing 

It is well known that internal waves are fundamentally different from surface waves. 
This is because in the former case the phase propagates in a direction perpendicular to 
the energy-propagation direction (as given by the group velocity vector), rather than 
along it. Nevertheless, one would like to interpret stationary, internal-wave patterns 
in terms of seiching modes - a resonance, familiar from oscillating surface-gravity 
waves in an enclosed basin (Miinnich 1993). It is shown in this study that such an 
interpretation is only occasionally justified. In general, internal waves are focused 
towards a limiting attractor, while increasing their amplitude and reducing their 
wavelength and group velocity. Its position depends on parameters characterizing 
the geometry. For the simple topographies (and stratification) considered here this 
attractor consists of one or two fixed sets of lines in the basin, whose locations depend 
on only one parameter, t: the product of the buoyancy and wave frequency ratio 
and the aspect ratio of the basin. The attractor can be classified by the number 
and location of reflections of the asymptotic ray with the surface. This is a fractal 
function of the scaled period of the internal-wave field, z: it can change very rapidly 
in certain intervals, while remaining qualitatively similar (characterized by the same 
period of the attractor) in other intervals. 

The attractor is the limiting trajectory of a ray’s orbit. The ray path itself is 
constructed, following Magaard (1962, 1968), by means of an iterated map. This 
map can be made explicit for piecewise linear, or quadratic shapes of the topography. 
The map consists of a rightward and leftward mode that get coupled for two-sided, 
supercritically sloping basins. This bi-modal map has the property that Lyapunov 
exponents are less than or equal to zero, corresponding to focusing or neutrally stable 
modes (resonances), respectively. The solution of the canonical, hyperbolic equation 
which the streamfunction satisfies, is completed by finding regions (the fundamental 
intervals) over which rays can be uniquely identified. By specifying the value of a 
field variable, related to the surface pressure, within these fundamental intervals, the 
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streamfunction in the entire basin can be computed. With this procedure, formally, 
only standing wave patterns have been obtained. Therefore, it is assumed that internal 
waves manage to ‘bounce back’ from the attractor. This is unlikely to happen in 
reality, though, since amplification of the internal-wave amplitude will inevitably lead 
to viscous decay (neglected so far) and ‘deposition of energy’ near the attractor. A 
proper description of a stationary (and modulated) propagating internal-wave field is 
currently being studied. 

7.2. Resonance 
In some cases a resonance does occur. Here we use the word resonance in a slightly 
broader sense than that introduced by Cushman-Roisin et al. (1989). They refer to 
each ray that returns to itself as a separate resonance. This is perhaps appropriate 
in their finite difference approach where this number, because of the discretization 
employed, is necessarily denumerable. Neglecting the attractors in the focusing cases 
(which in their terminology would, formally, also be regarded a resonance), we define 
a resonance as a situation when on one interval each point taken from that interval 
acts as starting point of a ray that eventually returns to its position after crisscrossing 
the basin a finite number of times. Perhaps more appropriately this should be referred 
to as a seiching mode. A necessary condition for seiching to occur is apparently that 
the wave ray stemming from the surface corner ends up in the critical characteristic. 
This condition is fulfilled by the classical, separable solutions in the rectangle, as well 
as by the resonant cases found for a bucket-shaped basin. We observed that it also 
applies to the separable solutions constructed for a (semi) elliptic basin, but not for 
a parabolic basin (see below). Physically, the relevance of resonant modes comes 
from the fact that, in principle, they lack the presence of vortex sheets, along which 
incoming internal wave energy will be degraded by viscous effects. These modes are 
therefore able to store more energy and will stand out globally. In practice, vortex 
sheets may still occur in these resonant cases too, as when there is a non-vanishing, 
surface pressure gradient in the corners of the basin, but they are of a different nature 
than those related to the attractors. 

Cushman-Roisin et al. (1989) argue that the existence of closed ray paths is sup- 
posedly the rule rather than the exception. We feel that this may in part be due 
to their approximation of true topography by horizontal and vertical line segments, 
which precludes the possibility of obtaining focusing with the numerical algorithm. 
Besides this there is a semantic difference. Our statement that closed ray paths are 
exceptional means that in the focusing (resonant) cases there is a set of xo-values of 
measure zero (one) for which ray paths are closed. Hence, since focusing is more 
common, this allows us to use this phrase. Conversely, Cushman-Roisin et al. (1989) 
stress that both in focusing and resonant cases there exists at least one closed ray 
and contrast this with the (exceptional) ergodic cases for which no ray ever closes 
on itself. This allows them to state that ray closing is generic. There is thus no 
contradiction between these two viewpoints. 

Now, Miinnich (1993, 1994) also obtains resonances (seiches) for the parabolic 
basin, a geometry where no such solutions exist according to the characteristic 
method. In particular he found the (1,l)-mode (consisting of one vertical and one 
horizontal cell) for aspect ratio z = 8. We believe that this mode was artificially 
obtained because the numerical procedure was formulated such that it defined a 
(1,l)-mode as one that minimizes the basin-averaged shear of the ‘solution’. In this 
way, we think that this numerical procedure trades off accuracy in favour of finding 
a minimally-sheared, modal solution. This value of z is interesting though, because it 
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is the only value for which a period-1 attractor exists for 1 ,< z ,< 3/2. This attractor 
consists of the ray starting at the surface from the centre of the basin (x = 0, z = 0), 
which exactly returns to itself after traversing a square-shaped ray path in the interior. 
All other starting positions lead to focusing towards this attractor, though. One may 
check in particular that rays starting in the corner do not coalesce with the critical 
characteristic (see Appendix), thus denying the existence of a resonance. 

From a numerical point of view too there are some advantages in using the 
characteristic method. First, the solution is exact along the characteristics and 
second, in regions of high shear, a higher accuracy is automatically obtained, because 
more rays are present there. This is not surprising, because discretization along 
characteristics (which includes information on the topography used; e.g. figure 14b, c) 
is better suited to the problem than discretization on a ‘random’ grid. 

Notwithstanding the difference in interpretation of ‘resonance’, one of the reasons 
for Cushman-Roisin et al. (1989) to introduce this concept was that it illuminates 
the fact that a complete specification of the internal-wave field is not always given 
in terms of its prescription at a particular part of the boundary. In their case it 
was a connecting shelf on which the internal-wave field was prescribed. As in the 
laboratory studies of Robinson (1969) and Sandstrom (1969) and in the field studies of 
Cushman-Roisin & Svendsen (1983) and deWitt et al. (1986), this left certain ‘shadow 
zones’ where the characteristics, emanating from the shelf, did not reach and which, 
as Cushman-Roisin et al. (1989) argue, are determined by diffusion. The question of 
whether a problem is ill-posed or well-posed is here resolved by identifying, so called, 
primary (fundamental) intervals on which the solution can be independently specified. 
This applies both to focusing and to resonant cases. In particular it implies that when 
the size of the fundamental intervals shrinks to the size of a point, no stationary 
solution pattern exists at all, because there is apparently just one ray on which the 
solution can be specified and that ray is ‘plane-filling’. Physically the function that 
leads to the specification within the primary intervals has been shown to be related 
to the pressure. What happens when the solution is over-specified is not clear yet and 
awaits a consideration of truly propagating solutions to the problem at hand. 

7.3. Relevance to -field observations 
The implications of focusing of an internal wave field for nature are not clear yet. 
Oceans, or smaller-scale basins, are not two-dimensional, their boundaries are not 
smooth, the fluid is not uniformly stratified and the forcing field is not monochromatic. 
However, refraction of incoming waves orients them preferentially in a cross-isobath 
direction (Wunsch 1969). Also, the large-scale internal waves are presumably not 
very sensitive to the details of the topography. Non-uniform stratification (neglecting 
reflection on this non-uniformity) only leads to curved ray paths (Cushman-Roisin & 
Svendsen 1983). Finally, the theory has been developed with just one single frequency 
in mind, whereas in reality internal waves are forced over the whole internal-wave 
band. However, in view of the linearity of the problem, these solutions can all be 
superposed. Probably, internal waves of tidal origin will be most important owing to 
the ubiquitous nature of the forcing. 

When internal waves do not lose their energy very rapidly by reflection at bound- 
aries and are able to cross the basin back and forth geometric focusing should, in 
principle, occur. The eventual implication is that it offers a mechanism by which 
‘mixing at a distance’ (along the attractor) can occur directly within the interior of 
the stratified ocean basin (and subsequently diffuse through the entire ocean along 
isopycnal surfaces). In this way it may perhaps contribute to mixing, leading to mid- 
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FIGURE 21. Definition sketch of parabolic basin with 1 < 7 < 3/2. 

depth ocean diapycnal diffusivities of 10-4m2s-' required by global budget studies 
(Munk 1966) and offer an alternative to boundary mixing (Garrett 1991). In order 
to quantify the proposed mechanism we need to estimate the amount of energy lost 
after reflection off a non-critically sloping bottom - the most common situation - and 
'surface', and thus assess the number of bounces an internal wave may go through 
before it is being focused to the extent that the Richardson number becomes subcrit- 
ical and mixing ensues. Alternatively, the smallest observable scale to which focusing 
proceeds may be set by the irregularities of smaller-scale topography by which the 
internal-wave field becomes diffusively scattered (Longuet-Higgins, 1969). (The phe- 
nomenon of split-reflection (Baines 197 lb), which this small-scale process entails, has 
here in fact been disregarded altogether and needs to be addressed in future studies). 

Admittedly, focusing, and therefore mixing, will first take place near the bottom 
boundary, but, rather than being an isotropic process along the boundary, the above 
mechanism suggests that there are specific locations where mixing occurs first (and 
preferentially) : i.e. near places where the attractor intersects the bottom. Near-bottom, 
intermittent, intermediate turbid layers have recently been observed in Emerald Basin 
on the Scotian Shelf by Azetsu-Scott, Johnson & Petrie (1995) who attribute this 
to anisotropic mixing due to (near) critical reflection (and amplification) of internal 
tides (presumably originating at the opposing break in topography). It is intriguing to 
speculate that the observed layers and inferred anisotropic mixing may, alternatively, 
be due to geometric focusing of internal tides. 

We are indebted to Peter Beerens for help with the numerical formulation of the 
algorithm, to Erwin Embsen for computer support, to Taco de Bruin for help with 
preparation of figure 13 and to Huib de Swart, Henk Dijkstra, Kees Vreugdenhil, 
Ferdinand Verhulst and Matthias Miinnich for enlightning conversations. During the 
course of the refereeing process it appeared that some of the work presented here 
has been anticipated by Cushman-Roisin (1993), who had presented it at the 1991 
IUGG-meeting in Vienna. Also, Dr. V. Shrira pointed out that related work has been 
done by Bunimovich (1980). 

Appendix. 
An explicit map for a basin with parabolic cross-section can be constructed for 

1 6 z < 3/2. For this interval each characteristic reflects either two or three times 
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from the bottom prior to reaching the surface. These two regions are separated 
by X ~ ) ( T )  = xi(x,.(-l)) = 6/z - 5,  a generalization of x,(T). Here x;,,(x) denote the 
conjugate mappings of those defined in ( 3 . 2 ~ )  and (3.2b), obtained by changing the 
signs in front of the radicals appearing in those expressions. For -1 < x < xp) the 
rightward map is given by (3.4). For xb2) < x < 1 the image is obtained with the aid 
of figure 21. Let y denote the true image of x after a rightward mapping. Two virtual 
auxiliary points, denoted X and Y ,  are related to x and y in the following way. A 
leftward map (3.2b), and its conjugate, applied to X yield x and Y :  

1/2 x =  - 1 - x +  (+ + 4 + 9  
T 22 ' 

112 y = - - x -  1 ( - + 4 + 9  -4x . 
z T 2 2  

A rightward map of Y ,  equation (3.2a), and its conjugate, give y and X 

y = - - - y -  -+4+- 
z ( 'TY 

x= - - -Y+ - + 4 + -  . 
z (a 22 I l l 2  

Combining this information leads to an explicit dependence y(x). Adding (A la) and 
(A l b )  yields 

(A 3a) 
2 

Y = - - x - 2X(x), 
7 

whereas adding the other two gives 
2 

y = -- - X(x) - 2Y (x,X(x)). 
z 

Inserting (A 3a) into this finally leads to 
6 

Y = -- z + 2x + 3X(x), 

where X ( x ) ,  the inverse of (A la) is given by x , ( x )  in ( 3 . 3 ~ ) .  Sign changes of s should, 
of course, again be accounted for. The new sign is given by s("-'), where y1 signifies the 
number of times the characteristic has hit the bottom prior to reaching the surface. 
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